Analytics of AI-Driven B2B Marketing Excellence for Sustainable Firm Performance in the Digital Age: SEM Analysis
DOI:
https://doi.org/10.53983/ijmds.v13n5.004Keywords:
Sustainable Firm Performance (SFP), Artificial Intelligence (AI), B2B Marketing, Technology Transformation, Predictive AnalyticsAbstract
This study utilized Structural Equation Modeling to analyze B2B marketing excellence from 260 respondents across various B2B companies in Oman. The study uses a convenient sampling approach to explore the multifaceted relationship between AI-driven strategies and B2B marketing excellence for sustainable firm performance. Furthermore, Smart-PLS is leveraged for its adaptability in handling complex high-order SEM structures. The hypotheses suggest that AI-driven marketing excellence positively correlates with information management, integration, and implementation management systems. Through rigorous analysis, this research sheds light on AI's influence on B2B marketing dynamics, offering valuable policy implications and tangible outcomes for businesses navigating the digital age. The findings render the role AI's role in shaping the future of sustainable B2B marketing excellence.
Downloads
References
Aguirre-Urreta, M. I. (2019). Detecting Common Method Bias: Performance of the Harman’s Single-Factor Test. Advances in Information Systems, 50(2), 45–70. https://doi.org/10.1145/3330472.3330477
Al-ruithe, M., & Benkhelifa, E. (2020). Determining the enabling factors for implementing cloud data governance in the Saudi public sector by structural equation modelling. Future Generation Computer Systems, 107, 1061–1076. https://doi.org/10.1016/j.future.2017.12.057
Anurag Shukla, Manish Dadhich, Dipesh Vaya, A. G. (2024). Impact of Behavioral Biases on Investors’ Stock Trading Decisions : A Comparehensive Quantitative Analysis. Indian Journal of Science and Technology, 17(8), 670–678. https://doi.org/10.17485/IJST/v17i8.2845
Baah, C., Opoku-Agyeman, D., Acquah, I. S. K., Agyabeng-Mensah, Y., Afum, E., Faibil, D., & Abdoulaye, F. A. M. (2021). Examining the correlations between stakeholder pressures, green production practices, firm reputation, environmental and financial performance: Evidence from manufacturing SMEs. Sustainable Production and Consumption. https://doi.org/10.1016/j.spc.2020.10.015
Bhat, J. R., AlQahtani, S. A., & Nekovee, M. (2022). FinTech enablers, use cases, and role of future internet of things. Journal of King Saud University - Computer and Information Sciences, 35(2), 87–101. https://doi.org/10.1016/j.jksuci.2022.08.033
Chiu, M., Yan, W., Ahmad, S., & Huang, N. (2022). Development of smart aquaculture farm management system using IoT and AI-based surrogate models. Journal of Agriculture and Food Research, 9(8), 1–11. https://doi.org/10.1016/j.jafr.2022.100357
Dadhich, Manish, Shalendra Singh Rao, Renu Sharma, R. M. (2023). Emerging Determinants and Analyatics of Off-balance Sheet Activities (OBSA) of Commercial Banks. Finance India, XXXVII(2), 383–400.
Dadhich, M., & Bhaumik, A. (2023). Demystification of Generative Artificial Intelligence (AI) Literacy, Algorithmic Thinking, Cognitive Divide, Pedagogical knowledge: A Comprehensive Model. 2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG), 1–5. https://doi.org/10.1109/ICTBIG59752.2023.10456172
Dadhich, M., Opoku-mensah, E., Hiran, K. K., Akwasi, B., Tuffour, P., & Mahmoud, A. (2024). Exploring the mediating roles of social networks and trust in the blockchain-social sustainability nexus. Journal of Economic Policy Reform, 1–23. https://doi.org/10.1080/17487870.2024.2364649
Dadhich, M., Rathore, S., Akwasi, B., Ajibade, S. M., & Agozie, D. Q. (2023). Quantifying the Dynamic Factors Influencing New-Age Users’ Adoption of 5G Using TAM and UTAUT Models in Emerging Country : A Multistage PLS-SEM Approach. Education Research International, 1, 1–15.
Das, D. (2017). Development and validation of a scale for measuring Sustainable Supply Chain Management practices and performance. Journal of Cleaner Production, 164, 1344–1362. https://doi.org/10.1016/j.jclepro.2017.07.006
Debnath, B., Siraj, M. T., Rashid, K. H. O., Mainul Bari, A. B. M., Karmaker, C. L., & Aziz, R. Al. (2023). Analyzing the critical success factors to implement green supply chain management in the apparel manufacturing industry: Implications for sustainable development goals in the emerging economies. Sustainable Manufacturing and Service Economics, 2, 1–12. https://doi.org/10.1016/j.smse.2023.100013
Doya, K., Ema, A., Kitano, H., Sakagami, M., & Russell, S. (2022). Social impact and governance of AI and neurotechnologies. Neural Networks, 152, 542–554. https://doi.org/10.1016/j.neunet.2022.05.012
Fornell C. and Larcker D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
Fosso Wamba, S., Queiroz, M. M., & Trinchera, L. (2020). Dynamics between blockchain adoption determinants and supply chain performance: An empirical investigation. International Journal of Production Economics, 229(April), 107791. https://doi.org/10.1016/j.ijpe.2020.107791
Fritz, M. M. C. (2022). A supply chain view of sustainability management. Cleaner Production Letters, 3(5), 1–10. https://doi.org/10.1016/j.clpl.2022.100023
Füller, J., Hutter, K., Wahl, J., Bilgram, V., & Tekic, Z. (2022). How AI revolutionizes innovation management – Perceptions and implementation preferences of AI-based innovators. Technological Forecasting and Social Change, 178, 1–22. https://doi.org/10.1016/j.techfore.2022.121598
G. K. Singh, M. Dadhich, V. C. and A. S. (2021). Impact of Big Data Analytics & Capabilities on Supply Chain Management (SCM) - An Analysis of Indian Cement Industry. 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 313–318. https://doi.org/10.1109/ICAC3N53548.2021.9725531
Gaurav Kumar Singh; Manish Dadhich. (2023). Supply Chain Management Growth With the Adoption of Blockchain Technology (BoT) and Internet of Things (IoT). 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 321–325. https://doi.org/10.1109/ICACITE57410.2023.10182619
Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M., Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S. K., Baker, T., Parlikad, A. K., Lutfiyya, H., Kanhere, S. S., Sakellariou, R., Dustdar, S., … Uhlig, S. (2022). AI for next generation computing: Emerging trends and future directions. Internet of Things (Netherlands), 19, 1–34. https://doi.org/10.1016/j.iot.2022.100514
Gupta, A. K., Ph, D., Gupta, N., & Ph, D. (2020). Effect of corporate environmental sustainability on dimensions of firm performance towards sustainable development : Evidence from India. Journal of Cleaner Production, 253, 1–14. https://doi.org/10.1016/j.jclepro.2019.119948
Hair, J. F., Ringle, C. M., Sarstedt, M. & G. (2018). Advanced issues in partial least square structural equation modeling(PLS-SEM). SAGE Publications Ltd.
Hair, J. F., Risher, J. J., & Ringle, C. M. (2018). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Hair Jr, Joseph F., G. Tomas M. Hult, Christian Ringle, and M. S. (2016). A primer on partial least squares structural equation modeling (PLS-SEM).
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.
Hiran, K. K., & Dadhich, M. (2024). Predicting the core determinants of cloud-edge computing adoption (CECA) for sustainable development in the higher education institutions of Africa: A high order SEM-ANN analytical approach. Technological Forecasting and Social Change, 199, 1–17. https://doi.org/10.1016/j.techfore.2023.122979
Jarvis, R., & Han, H. (2021). Fintech Innovation: Review and Future Research Directions. Int J Bank Fin Ins Tech, 1(1), 79–102.
Jordan, P. J. (2020). Common method bias in applied settings : The dilemma of researching in organizations. Australian Journal of Management, 45(1), 3–14. https://doi.org/10.1177/0312896219871976
Luo, S., Sun, Y., Yang, F., & Zhou, G. (2022). Does fintech innovation promote enterprise transformation? Evidence from China. Technology in Society, 68, 1–13. https://doi.org/10.1016/j.techsoc.2021.101821
Masood, T., & Sonntag, P. (2020). Computers in Industry Industry 4 . 0 : Adoption challenges and benefits for SMEs. Computers in Industry, 121, 103261. https://doi.org/10.1016/j.compind.2020.103261
Mikalef, P., Islam, N., Parida, V., Singh, H., & Altwaijry, N. (2023). Artificial intelligence ( AI ) competencies for organizational performance : A B2B marketing capabilities perspective. Journal of Business Research, 164, 1–11. https://doi.org/10.1016/j.jbusres.2023.113998
Muganyi, T., Yan, L., & Sun, H. ping. (2021). Green finance, fintech and environmental protection: Evidence from China. Environmental Science and Ecotechnology, 7, 1–8. https://doi.org/10.1016/j.ese.2021.100107
Prasetiyo, W. H., Naidu, N. B. M., Sari, B. I., Mustofa, R. H., Rahmawati, N., Wijaya, G. P. A., & Hidayat, O. T. (2021). Survey data of internet skills, internet attitudes, computer self-efficacy, and digital citizenship among students in Indonesia. Data in Brief, 39, 1–19. https://doi.org/10.1016/j.dib.2021.107569
R. Sitharthan, M. R. (2021). Application of machine learning (ML) and internet of things (IoT) in healthcare to predict and tackle pandemic situation. Distributed and Parallel Databases, 1(ML), 1–22. https://doi.org/10.1007/s10619-021-07358-7
Robert Mwiinga, M. D. (2022). Empirical Investigation of the Drivers of 5G and the Mediating Role of Users’ Attitudes to Achieving Word of Mouth and Willingness: A Case Study of the Microfinance Institutions of Zambia. In River Publishers (p. 22). https://doi.org/10.1201/9781003374664
Saura, J. R., Ribeiro-Soriano, D., & Palacios-Marqués, D. (2021). Setting B2B digital marketing in artificial intelligence-based CRMs: A review and directions for future research. Industrial Marketing Management, 98(January), 161–178. https://doi.org/10.1016/j.indmarman.2021.08.006
Shinde, R., Patil, S., Kotecha, K., & Ruikar, K. (2021). Blockchain for securing AI applications and open innovations. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 1–38. https://doi.org/10.3390/joitmc7030189
Singh, G. K. (2021). Impact Execution of Total Quality Management ( TQM ) on Operational Performance of Indian Cement Manufacturing Industry : A Comprehensive SEM Approach. Design Engineering, 8, 13538–13562. https://doi.org/http://thedesignengineering.com/index.php/DE/article/view/6476
Singhvi, S., & Dadhich, M. (2023). FinTech Revolution and Future of Sustainable Banking: Opportunities and Risks Analysis. International Journal of Management and Development Studies, 12(04), 12–21. https://doi.org/10.53983/ijmds.v12n04.003
Taneja, S., & Ali, L. (2021). Determinants of customers’ intentions towards environmentally sustainable banking: Testing the structural model. Journal of Retailing and Consumer Services, 59(12), 1–14. https://doi.org/10.1016/j.jretconser.2020.102418
Zou, L., Wu, J., Gong, Y., Chen, M., & Xia, M. (2023). Operations research on the sharing economy: A bibliometric analysis and literature review. Electronic Commerce Research and Applications, 59(5), 1–16. https://doi.org/10.1016/j.elerap.2023.101265
